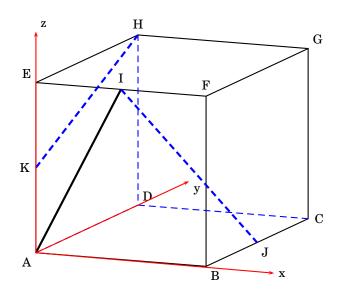
Correction



1. Dans le repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$, les points I, K et H ont pour coordonnées respectives $(\frac{1}{2}, 0, 1), (0, 0, \frac{1}{2})$ et (0, 1, 1)

Les vecteurs \overrightarrow{AI} et \overrightarrow{KH} ont pour coordonnées respectives $(\frac{1}{2}, 0, 1)$ et $(0, 1, \frac{1}{2})$. Comme ces coordonnées ne sont pas proportionnelles, les deux vecteurs $\overrightarrow{(AI)}$ et $\overrightarrow{(KH)}$ ne sont pas colinéaires et donc les droites (AI) et (KH) ne sont pas parallèles.

- 2. (a) E et F ont pour coordonnées respectives E(0,0,1) et F(1,0,1) Le milieu I de [EF] a pour coordonnées $I(\frac{1}{2},0,1)$.
 - (b) On a $\overrightarrow{IJ}\left(\frac{1}{2}, \frac{1}{2}, -1\right)$, $\overrightarrow{AE}(0, 0, 1)$ et $\overrightarrow{AC}(1, 1, 0)$. On remarque que $2\left(\overrightarrow{IJ} + \overrightarrow{AE}\right) = \overrightarrow{AC}$.

Le vecteur \overrightarrow{AC} est s'écrit comme combinaison des vecteurs \overrightarrow{IJ} et \overrightarrow{AE} : ces trois vecteurs sont donc coplanaires.

- 3. $\overrightarrow{u}(1; -2; 3)$ est un vecteur directeur de la droite d_1 et $\overrightarrow{v}(1; 1; 2)$ est un vecteur directeur de la droite d_2 , ces deux vecteurs ne sont pas colinéaires, donc les droites d_1 et d_2 ne sont pas parallèles.
- 4. Le plan a pour vecteur normal $\overrightarrow{n}(1; 3; -2)$, on remarque que les vecteurs \overrightarrow{u} et \overrightarrow{n} ne sont pas colinéaires donc la droite d_1 n'est pas parallèle à \mathscr{P} .

Le produit scalaire $\overrightarrow{n} \cdot \overrightarrow{v} = 1 + 3 - 4 = 0$: les vecteurs \overrightarrow{n} et \overrightarrow{v} sont orthogonaux donc la droite d_2 est parallèle au plan \mathscr{P} .

5. On a $\overrightarrow{\mathrm{ML}}(-1; -3; 2)$, donc $\overrightarrow{\mathrm{ML}} = -\overrightarrow{n}$ est un vecteur normal au plan \mathscr{P} .

D'autre part le point L(4; 0; 3) appartient au plan $\mathscr P$ car ses coordonnées vérifient l'équation de $\mathscr P$ en effet $4+3\times0-2\times3+2=6-6=0$, donc L est le projeté orthogonal de M sur le plan $\mathscr P$.