Correction

- 1. 2022 correspond à n = 1, donc $u_1 = 0.8u_0 \times (1 0.1 \times u_0) = 0.8 \times 0.7 \times (1 0.1 \times 0.7) = 0.56 \times (1 0.07) = 0.56 \times 0.93 = 0.5208$ soit environ 520 individus.
 - 2023 correspond à n = 2, donc $u_2 = 0.8u_1 \times (1 0.1u_1) = 0.8 \times 0.5208 \times (1 0.1 \times 0.5208) = 0.41664 \times (1 0.05208) = 0.41664 \times 0.94792 \approx 0.3949$ soit environ 395 individus.
- 2. Soit f la fonction définie sur l'intervalle [0; 1] par :

$$f(x) = 0.8x(1 - 0.1x) = 0.8x - 0.08x^2$$

f est une fonction polynôme dérivable sur \mathbb{R} , donc sur [0,1] et sur cet intervalle :

$$f'(x) = 0.8 - 2 \times 0.08x = 0.8 - 0.16x$$

Or,
$$0.8 - 0.16x > 0 \iff -0.16x > -0.8 \iff x < \frac{0.8}{0.16} = 5.$$

Par conséquent f'(x) > 0 sur [0,1]. La fonction f est donc strictement croissante sur [0,1]. On obtient le tableau de variation suivant :

x	0	1
f'(x)	+	
f(x)	0	0.72

- 3. L'équation f(x) = x, s'écrit : $0.8x 0.08x^2 = x$, ce qui donne $-0.2x 0.08x^2 = 0$ ou encore x(0.2 + 0.08x) = 0. Donc soit x = 0 ou 0.2 + 0.08x = 0, finalement : x = 0 ou $x = -\frac{0.2}{0.08} = -2.5$. Mais $-2.5 \notin [0,1]$, alors l'unique solution de l'équation f(x) = x dans [0,1] est 0. On remarquera pour la suite de l'exercice que, pour tout entier naturel n, $u_{n+1} = f(u_n)$.
- 4. (a) On veut par récurrence que pour tout entier naturel n, $0 \le u_{n+1} \le u_n \le 1$.
 - **Initialisation**: on a $0 \le 0.5208 \le 0.7 \le 1$, soit $0 \le u_1 \le u_0 \le 1$: la relation est vraie au rang 0;
 - **Hérédité** : Supposons que pour $n \in \mathbb{N}$, on ait : $0 \le u_{n+1} \le u_n \le 1$; la fonction f étant croissante sur [0,1], on a donc : $f(0) \le f(u_{n+1}) \le f(u_n) \le f(1)$, soit puisque f(0) = 0 et $f(1) = 0, 8 \times (1 0, 1) = 0, 72 \le 1$: $0 \le u_{n+2} \le u_{n+1} \le 1$: la relation est donc vraie au rang n + 1.
 - **Conclusion**: la relation est vraie au rang 0 et si elle est vraie au rang n entier naturel quelconque, elle est vraie au rang n+1: d'après le principe de récurrence : Pour tout entier naturel n, $0 \le u_{n+1} \le u_n \le 1$.
 - (b) La suite (u_n) est la question précédente décroissante et minorée par 0; elle est donc est convergente vers une limite ℓ telle que $0 \le \ell \le 1$.
 - (c) La fonction f est continue sur [0,1] (car c'est une fonction polynôme). ℓ est donc solution de l'équation f(x) = x, dont on a vu à la question 3. qu'elle n'avait que 0 comme solution sur l'intervalle [0,1]. On conclut que : $\lim_{n \to +\infty} u_n = \ell = 0$.
- 5. (a) L'étude précédente a montré que le nombre d'individus décroit, donc le biologiste a raison puisque la limite de la suite du nombre d'individus est égale à zéro.
 - (b) Le biologiste considère que l'espèce sera menacée si le nombre d'individus devient inférieur ou égal à 30. Son algorithme calcule les termes de la suite tant que ceux-ci sont strictement supérieurs à 0,03. Il s'arrête à n=13 car $u_{13}\approx 0,028$

1

L'espèce sera donc menacée d'extinction en 2034.