Exercice 1

On considère la fonction f définie sur l'intervalle $\left[1\;;\;10\right]$ par :

$$f(x) = x + 2 + 2\ln x$$

Montrer que la fonction ${\cal F}$ définie par :

$$F(x) = \frac{x^2}{2} + 2x\ln(x)$$

est une primitive de la fonction f sur l'intervalle $[1\ ;\ 10].$

Correction

Pour montrer que F est une primitive de f sur l'intervalle $[1\ ;\ 10]$, il suffit montrer que

F est la somme de fonctions dérivables sur [1 ; 10] don F est dérivable sur cet intervalle.

La dérivée de la de la fonction $x \mapsto \frac{x^2}{2}$ est la fonction $x \mapsto x$. Pour dériver la fonction $x \mapsto 2x \ln(x)$. On pose:

$$u(x) = 2x$$
 et $v(x) = ln(x)$ ce qui donne $u'(x) = 2$ et $v'(x) = \frac{1}{x}$.

On obtient alors

$$u'(x)v(x) + u(x)v'(x) = 2ln(x) + 2x \times \frac{1}{x} = 2ln(x) + 2$$

Par conséquent F'(x) = x + 2ln(x) + 2 = f(x).

Conclusion: La fonction F est une primitive de la fonction f sur l'intervalle [1; 10]