Leçon 210 : Séries entières d'une variable réelle ou complexe. Rayon de convergence. Propriétés de la somme. Exemples.

February 21, 2022

Contents

1		ntières d'une variable complexe
	1.1 Défi	nitions et notations
	1.2 Déte	ermination pratique du rayon de convergence
	1.2.	Règle de D'Alembert
	1.2.5	Règle de de Cauchy
	1.2.	B Règle d'Hadamard
2	Propriétés de la somme d'une série entière	
3	Applicat	tion des séries entière
	3.1 Fone	ctions développables en série entière
	3.2 App	lication des développement en série entière

1 Séries entières d'une variable complexe

1.1 Définitions et notations

Définition 1. On appelle série entière toute série de fonctions de la forme $\sum_{n\in\mathbb{N}}a_nz^n$ où $z\in\mathbb{C}$ et $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes .

Proposition 1. On considère $\sum_{n\in\mathbb{N}}a_nz^n$ une série entière de rayon de convergence R. Soit z un élément de \mathbb{C} .

- . Si |z| < R alors la série $\sum\limits_{n \in \mathbb{N}} a_n z^n$ est absolument convergente,
- . si |z|>R alors la série $\sum\limits_{n\in\mathbb{N}}a_nz^n$ est divergente.

preuve et exemple

1.2 Détermination pratique du rayon de convergence

Soit $\sum\limits_{n\in\mathbb{N}}a_nz^n$ une série entière de rayon de convergence R .

1.2.1 Règle de D'Alembert

Si
$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \ell \in \mathbb{R}^+ \cup \{+\infty\} \text{ alors } R = \frac{1}{\ell}.$$

preuve et exemple

1.2.2 Règle de de Cauchy

Si
$$\lim_{n \to +\infty} |a_n|^{\frac{1}{n}} = \ell \in \mathbb{R}^+ \cup \{+\infty\}$$
 alors $R = \frac{1}{\ell}$. preuve et exemple

1.2.3 Règle d'Hadamard

Si
$$\limsup |a_n|^{\frac{1}{n}} = \ell \in \mathbb{R}^+ \cup \{+\infty\}$$
 alors $R = \frac{1}{\ell}$.

2 Propriétés de la somme d'une série entière

On désigne par $D(0,R) = \{z \in \mathbb{C}, |z| < R\}$ Le disque ouvert de \mathbb{C} centré en 0 et de rayon R. $\overline{D(0,R)} = \{z \in \mathbb{C}, |z| \le R\}$ Le disque fermé de \mathbb{C} centré en 0 et de rayon R.

Théorème-définition 1 On appelle somme de la série entière $\sum a_n z^n$ de rayon de convergence R non nul l'application définie dans le disque de convergence D(0,R) à valeurs dans $\mathbb C$ par: $S(z) = \sum_{n=0}^{+\infty} a_n z^n$. S est continue sur D(0,R)

Preuve : La série entière $\sum a_n z^n$ converge uniformément dans tout disque fermé $\overline{D(0,\rho)}$ avec $0 < \rho < R$. Donc si z est un point quelconque du disque D(0,R), il vérifie |z| < R et il existe donc un réel ρ vérifiant $|z| < \rho < R$. Alors le point z appartient au disque fermé $\overline{D(0,\rho)}$ et la fonction S est continue en z.

Remarque : il y a convergence uniforme de la série entière dans tout disque $\overline{D(0,\rho)} \subset D(0,R)$, en général, pas dans le disque de convergence D(0,R), mais la somme de la série entière est continue dans tout le disque de convergence.

Exemples:

- Série géométrique $z\mapsto \sum\limits_{n=0}^{+\infty}z^n=\frac{1}{z-1}$ est continue sur D(0,1) (sa restriction à] -1,1[: $x\longmapsto \sum\limits_{n=0}^{+\infty}x^n=\frac{1}{x-1}$. est uniformément continue sur $[-\rho,\rho]\subset]-1,1$ [, $0<\rho<1$).
- $z \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^2} z^n$ est continue sur $\overline{D(0,1)}$

Théorème-définition 2: Soit $\sum a_n z^n$ une série entière de rayon de convergence R non nul. On note encore S la restriction à l'intervalle]-R,R[de la somme de la série entière, c'est-à-dire la fonction définie sur]-R,R[par $S(x)=\sum a_n x^n$.

La fonction S est de classe \mathscr{C}^{∞} sur]-R,R[et, pour tout entier $p\in\mathbb{Z}$, on a $S^{(p)}(x)=\sum_{n=0}^{+\infty}\alpha_{n+p}x^n$.

La fonction S admet pour primitives sur]-R, R[l'ensemble des fonctions $x\mapsto\sum\limits_{n=0}^{+\infty}\frac{a_nx^n}{n+1}+k,\ k\in\mathbb{R}$

3 Application des séries entière

3.1 Fonctions développables en série entière

Définition 3 : On dit que f est développable en série entière sur un intervalle $]-\alpha,\alpha[$ au voisinage de 0, s'il existe un réel $\alpha > 0$ et une série entière $\sum a_n x^n$ telle que : $\forall x \in]-\alpha,\alpha[$, $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

2

Proposition 2. Si une fonction f est développable en série entière sur un intervalle $]-\alpha,\alpha[$, alors f est \mathscr{C}^{∞} sur cet intervalle, le développement est unique et $\forall x \in]-\alpha,\alpha[$ $f(x)=\sum\limits_{n=0}^{+\infty}\frac{f^{(n)}(0)}{n!}x^n.$ Exemple $\forall x \in \mathbb{R}, \ e^x=\sum\limits_{n=0}^{+\infty}\frac{x^n}{n!}.$

A partir des développements de la fonction exponentielle sur \mathbb{R} et de $(1+x)^{\alpha}$ sur]-1,1[on peut calculer ceux des fonctions usuelles par opérations algébriques, dérivation et intégration.

3.2 Application des développement en série entière

- a. **Développements limités, équivalent**. Exemple: Étude de la suite de terme général $\left(1+\frac{1}{n}\right)^n$.
- b. **Résolution d'équation différentielle.** Exemple : recherche des solutions développables en série entière au voisinage de 0 de l'équation différentielle y'' xy = 0.
- c. Calcul d'intégrales par développement en série et intégration terme à terme.
- d. Calcul de valeurs approchées d'une fonction
- e. **Résolution d'équation fonctionnelle** Exemple $f(x) + f(x^2) = x$.