EXERCICE 6

Une chaîne de fabrication produit des pièces mécaniques. On estime que $5\,\%$ des pièces produites par cette chaîne sont défectueuses.

Un ingénieur a mis au point un test à appliquer aux pièces. Ce test a deux résultats possibles : « positif » ou bien « négatif ».

On applique ce test à une pièce choisie au hasard dans la production de la chaîne.

On note p(E) la probabilité d'un évènement E.

On considère les évènements suivants :

- *D* : « la pièce est défectueuse » ;
- T : « la pièce présente un test positif » ;
- \overline{D} et \overline{T} désignent respectivement les évènements contraires de D et T.

Compte tenu des caractéristiques du test, on sait que :

- La probabilité qu'une pièce présente un test positif sachant qu'elle est défectueuse est égale à 0,98;
- la probabilité qu'une pièce présente un test négatif sachant qu'elle n'est pas défectueuse est égale à 0,97.

Les parties I et II peuvent être traitées de façon indépendante.

PARTIE I

- 1. Traduire la situation à l'aide d'un arbre pondéré.
- **2. a.** Déterminer la probabilité qu'une pièce choisie au hasard dans la production de la chaîne soit défectueuse et présente un test positif.
 - **b.** Démontrer que : p(T) = 0.0775.
- **3.** On appelle **valeur prédictive positive** du test la probabilité qu'une pièce soit défectueuse sachant que le test est positif. On considère que pour être efficace, un test doit avoir une valeur prédictive positive supérieure à 0,95.

Calculer la valeur prédictive positive de ce test et préciser s'il est efficace.

PARTIE II

On choisit un échantillon de 20 pièces dans la production de la chaîne, en assimilant ce choix à un tirage avec remise. On note X la variable aléatoire qui donne le nombre de pièces défectueuses dans cet échantillon.

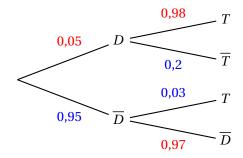
On rappelle que : p(D) = 0,05.

- 1. Justifier que X suit une loi binomiale et déterminer les paramètres de cette loi.
- Calculer la probabilité que cet échantillon contienne au moins une pièce défectueuse.
 On donnera un résultat arrondi au centième.
- **3.** Calculer l'espérance de la variable aléatoire *X* et interpréter le résultat obtenu.

Correction

PARTIE I

1. D'après l'énonce, P(D) = 0,05, $P_D(T) = 0,98$ et $P_{\overline{D}}(\overline{T}) = 0,97$. On complète ces données sur un arbre pondéré modélisant la situation proposée :



2. a. L'évènement "Une pièce est défectueuse et présente un test positif" s'écrit $D \cap T$, sa probabilité est donnée par le premier chemin de l'arbre :

$$P(D \cap T) = P(D) \times P_D(T) = 0,05 \times 0,98 = 0,049$$

b. D'après la loi des probabilités totales :

$$P(T) = P(D \cap T) + P(\overline{D} \cap T).$$

Avec,
$$P(\overline{D} \cap T) = P(\overline{D}) \times P_{\overline{D}}(T) = 0,95 \times 0,3 = 0,0285$$
. Donc $P(T) = 0,049 + 0,0285 = 0,0775$.

3. La valeur prédictive positive du test est donnée par :

$$P_T(D) = \frac{P(T \cap D)}{P(T)} = \frac{P(D \cap T)}{P(T)} = \frac{0,049}{0,0775} \approx 0,6322.$$

Soit $P_T(D) \approx 0,632$ au millième près.

Le test n'est pas efficace car $P_T(D) < 0.95$.

PARTIE II

- 1. Le choix de l'échantillon étant assimilé à un tirage avec remise avec la probabilité de choisir un produit défectueux égale à 0,05, on peut donc dire que la variable aléatoire X suit une loi binomiale de paramètres n=10 et p=0,05.
- **2.** "L'échantillon contient au moins une pièce défectueuse" correspond à $X \ge 1$. On cherche $p(X \ge 1) = 1 p(X = 0)$ Or $p(X = 0) = 0,95^{20}$. Donc $p(X \ge 1) = 1 0,95^{20} \approx 0,642$. Soit $p(X \ge 1) = 0,64$ au centième près.
- **3.** D'après le cours on a : $E(X) = n \times p = 20 \times 0,05 = 1$.

Conclusion : Pour un grand nombre de tirages d'échantillons on trouvera 1 pièce défectueuse sur 20 pièces tirées.

2