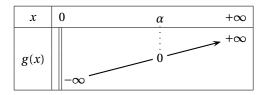
Partie I: étude d'une fonction auxiliaire

- **1.** La fontion g est définie sur $]0, +\infty[$, on détermine les limites de g en $+\infty$ et en 0.
 - $\lim_{x \to +\infty} \ln(x) = +\infty$ et $\lim_{x \to +\infty} 2x 2 = +\infty$ d'où par somme des limites $\lim_{x \to +\infty} g(x) = +\infty$
 - $\lim_{\substack{x \to 0 \\ x > 0}} \ln(x) = -\infty$ et $\lim_{\substack{x \to 0 \\ x > 0}} 2x 2 = -2$ d'où par somme des limites $\lim_{\substack{x \to 0 \\ x > 0}} g(x) = -\infty$
- **2.** La fonction g est somme de deux fonction dérivables sur]0; $+\infty[$, $g'(x) = \frac{1}{x} + 2 > 0$; donc la fonction g est strictement croissante sur]0; $+\infty[$.
- **3.** On dresse le tableau des variations de la fonction *g* :



D'après ce tableau de variations, la fonction g est continue et strictement croissante sur $]0,+\infty[$ de plus $\lim_{\substack{x\to 0\\x\to 0}} g(x) = -\infty$ et $\lim_{\substack{x\to +\infty\\x\to 0}} g(x) = +\infty$. Donc d'après le corollaire du théorème

des valeurs intermédiaires l'équation g(x) = 0 admet une unique solution α sur]0; $+\infty[$.

4. $g(1) = \ln 1 + 2 - 2 = 0$ donc $\alpha = 1$.

On en déduit que g(x) < 0 sur]0; 1[, et que g(x) > 0 sur]1; $+\infty$ [.

Partie II : étude d'une fonction f

1. a. Pour tout x de]0; $+\infty$ [, on a:

$$f'(x) = \left(\frac{1}{x^2}\right)(\ln(x) - 1) + \left(2 - \frac{1}{x}\right)\left(\frac{1}{x}\right) = \frac{\ln(x) - 1 + 2x - 1}{x^2} = \frac{\ln(x) + 2x - 2}{x^2} = \frac{g(x)}{x^2}$$

b. Quel que soit $x \in]0$; $+\infty[$, $x^2 > 0$ donc f'(x) est du signe de g(x) qu'on a établit dans la question I-4. On a $f(1) = \left(2 - \frac{1}{1}\right)(\ln(1) - 1) = -1$

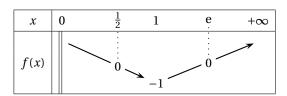
On dresse le tableau de variations de f:

x	0		1		+∞
f'(x)		-	•	+	
f(x)			\ _1 /		7

2. $f(x) = 0 \iff 2 - \frac{1}{x} \ln(x) - 1 = 0 \iff 2 - \frac{1}{x} = 0 \text{ ou } \ln(x) - 1 = 0 \iff x = \frac{1}{2} \text{ ou } x = e$

L'équation f(x) = 0 admet donc deux solutions sur]0; $+\infty[: x = \frac{1}{2}$ et x = e.

On dresse le tableau de variations de la fonction f:



On en déduit le tableau de signes de la fonction f sur]0; $+\infty[$:

x	0		$\frac{1}{2}$		e		+∞
f(x)		+	ø	_	ø	+	

1

Partie III : étude d'une fonction ${\it F}$ admettant pour dérivée la fonction ${\it f}$

- 1. Comme F' = f, les variations de la fonction F sont donc déterminées par le signe de f(x) établit en II-2. On en déduit que F est croissante sur les intervalles $]0, \frac{1}{2}[$ et $]0, +\infty[$ et F est décroissante sur $[0, +\infty[$.
- **2.** Le coefficient directeur de la tangente au point d'abscisse x = a à la courbe \mathscr{C}_F est f(a). Pour que \mathscr{C}_F admette des tangentes parallèles à l'axe des abscisses, il faut trouver des valeurs de x pour lesquelles f(x) = 0.
 - D'après la question II-2, \mathscr{C}_F admet deux tangentes parallèles à l'axe des abscisses, en $x = \frac{1}{2}$ et en x = e.