1. On considère la fonction f est définie sur \mathbb{R}_+^* par :

$$f(x) = x \ln(x) x + 1$$

f est dérivable sur \mathbb{R}_+^* en tant que produit et somme de fonctions dérivables sur cet intervalle. Pour tout x réel strictement positif, on a :

$$f'(x) = 1 \times \ln(x) + x \times \frac{1}{x} - 1 + 0 = \ln(x) + \frac{x}{x} - 1 = \ln(x) + 1 - 1 = \ln(x)$$

Réponse a.

2. On a $g(x) = x^2 - x^2 \ln(x)$.

 $\lim_{x\to 0} x^2 = 0$ et d'après le cours $\lim_{x\to 0} x^2 \ln(x) = 0$ (croissances comparées).

Donc par somme de limites $\lim_{x\to 0} g(x) = 0$.

Réponse c.

3. Quel que soit $x \in \mathbb{R}$, $f(x) = x(x^2 - 0.9x - 0.1)$.

On a donc $f(x) = 0 \iff x = 0 \text{ ou } x^2 - 0.9x - 0.1 = 0$

 $x_0 = 0$ est donc une solution et pour l'équation du second degré $\Delta = 0, 121 = 0, 11^2 > 0$, elle admet donc deux solutions : $x_1 = -0, 1$ et $x_2 = 1$.

L'équation f(x) = 0 a donc trois solutions : -0, 1; 0 et 1.

Réponse d.

4. La fonction définie sur \mathbb{R} par $K(x) = \frac{1}{2}H(2x)$ est dérivable sur \mathbb{R} en tant que composée de fonctions dérivables. Et comme H est une primitive de h sur \mathbb{R} on alors :

$$\forall x \in \mathbb{R}, \ K'(x) = \frac{1}{2} \times 2H'(2x) = H'(2x) = h(2x)$$

Donc on a:

$$\forall x \in \mathbb{R}, \ K'(x) = k(x)$$

On en déduit donc que K est une primitive de k sur \mathbb{R} .

Réponse c.

5. La fonction f est dérivable sur \mathbb{R} , en tant que produit de fonctions dérivables sur cet ensemble.

$$\forall x \in \mathbb{R}, \quad 1 \times e^x + x \times e^x = (1+x)e^x.$$

On a donc
$$f'(1) = (1+1)e^1 = 2e$$
 et $f(1) = 1 \times e^1 = e$.

L'équation réduite de la tangente à la courbe de f au point d'abscisse 1 est donc :

$$y = f'(1)(x-1) + f(1) = 2e(x-1) + e = 2ex + 2e - e = 2ex - e$$

Réponse b.

$$(0,2)^n < 0,001 \iff \ln(0,2^n) < \ln(0,001)$$

 $\iff n \ln(0,02) < \ln(0,001)$
 $\iff n > \frac{\ln(0,001)}{\ln(0,2)} \quad \text{car } \ln(0,2) < 0$

Or, $\frac{\ln(0,001)}{\ln(0,2)} \approx 4,3$, donc les solutions de cette inéquation sont les entiers naturels n tels que $n \ge 5$.

6. Réponse d.