Soit *n* un entier naturel non nul.

On considère la fonction f_n dèfinie et dérivable sur l'ensemble $\mathbb R$ des nombres rèels par

$$f_n(x) = x^2 e^{-2nx}.$$

On note \mathcal{C}_n la courbe représentative de la fonction f_n dans un repère orthogonal.

On définit, pour tout entier naturel n non nul, $I_n = \int_0^1 f_n(x) dx$.

Partie A : Étude de la fonction f_1

1. La fonction f_1 est définie sur \mathbb{R} par $f_1(x) = x^2 e^{-2x}$.

On admet que f_1 est dérivable sur \mathbb{R} et on note f_1' sa dérivée.

- **a.** Justifier que pour tout réel x, $f'_1(x) = 2xe^{-2x}(1-x)$.
- **b.** Étudier les variations de la fonction f_1 sur \mathbb{R} .
- **c.** Déterminer la limite de f_1 en $-\infty$.
- **d.** Vérifier que pour tout réel x, $f_1(x) = \left(\frac{x}{e^x}\right)^2$. En déduire la limite de f_1 en $+\infty$.
- **2.** En utilisant un système de calcul formel, on trouve qu'une primitive F_1 de la fonction f_1 est donnée par

$$F_1(x) = -e^{-2x} \left(\frac{x^2}{2} + \frac{x}{2} + \frac{1}{4} \right)$$

En déduire la valeur exacte de I_1 .

Partie B : Étude de la suite (I_n)

- **1.** Soit *n* un entier naturel non nul.
 - **a.** Interpréter graphiquement la quantité I_n .
 - **b.** Émettre alors une conjecture sur le sens de variation et sur la limite éventuelle de la suite (I_n) . Expliciter la démarche qui a mené à cette conjecture.
- **2. a.** Justifier que, pour tout entier naturel n non nul et pour tout réel x appartenant à [0; 1],

$$f_{n+1}(x) = e^{-2x} f_n(x).$$

b. En déduire, pour tout entier naturel n non nul et pour tout réel x appartenant à [0; 1],

$$f_{n+1}(x) \leqslant f_n(x)$$
.

- **c.** Déterminer alors le sens de variation de la suite (I_n) .
- **3.** Soit *n* un entier naturel non nul.
 - **a.** Justifier que pour tout entier naturel *n* non nul et pour tout réel *x* appartenant à [0; 1],

$$0 \leqslant f_n(x) \leqslant e^{-2nx}$$
.

b. En déduire un encadrement de la suite (I_n) , puis sa limite.